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Aims: The incidence of lung infections is increasing worldwide in individuals suffering from cystic fibro- 

sis and chronic obstructive pulmonary disease. Mycobacterium abscessus is associated with chronic lung 

deterioration in these populations. The intrinsic resistance of M. abscessus to most conventional antibi- 

otics jeopardizes treatment success rates. To date, no single drug has been developed targeting M. absces- 

sus specifically . The objective of this study was to characterize VOMG, a pyrithione-core drug-like small 

molecule, as a new compound active against M. abscessus and other pathogens. 

Methods: A multi-disciplinary approach including microbiological, chemical, biochemical and transcrip- 

tomics procedures was used to validate VOMG as a promising anti- M. abscessus drug candidate. 

Results: To the authors’ knowledge, this is the first study to report the in-vitro and in-vivo bacterici- 

dal activity of VOMG against M. abscessus and other pathogens. Besides being active against M. abscessus 

biofilm, the compound showed a favourable pharmacological (ADME-Tox) profile. Frequency of resistance 

studies were unable to isolate resistant mutants. VOMG inhibits cell division, particularly the FtsZ en- 

zyme. 

Conclusions: VOMG is a new drug-like molecule active against M. abscessus , inhibiting cell division with 

broad-spectrum activity against other microbial pathogens. 

© 2024 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Mycobacterium abscessus subsp. abscessus ( Mab , also known 

s Mycobacteroides abscessus subsp. abscessus ) is an opportunis- 

ic pathogen that has emerged recently as responsible for a wide 

ange of clinical manifestations [ 1–3 ]. The incidence of Mab - 

nduced pulmonary infections is increasing worldwide, and de- 

erves particular attention in people with cystic fibrosis (CF) and 

hronic obstructive pulmonary disease (COPD) [ 4 , 5 ]. 
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Mab is intrinsically resistant to many drugs, mainly due to the 

resence of a mycobacterial cell wall with low permeability. It is 

rimarily composed of lipids, such as mycolic acids (up to 60%) 

 6 ]. Furthermore, unlike Mycobacterium tuberculosis (Mtb), Mab is 

haracterized by two morphotypes: smooth and rough [ 6 ]. In Mab 

ulmonary infections, smooth strains producing glycopeptidolipids 

rst colonize the lung epithelium and form biofilm [ 3 , 7 , 8 ]. It is

oteworthy that Mab biofilms are particularly tolerant to antibi- 

tics, contributing to their drug resistance [ 3 , 6 , 9 ]. From smooth

trains, rough cord-forming variants could emerge, which are more 

irulent and cause invasive lung infections [ 3 , 6 , 7 ]. 

Current anti- Mab therapies rely on old drugs and have very 

oor success rates [ 10 , 11 ]. One of the reasons is that Mab is highly

esistant to the currently used antimicrobial drugs [ 12 ], and no 

ew antibiotics have been developed specifically for this pathogen 

 13 , 14 ]. Treatment failure leads to an accelerated decline in lung 

unction and, in some countries, Mab -infected CF individuals are 

xcluded from lung transplantation lists [ 3–5 ]. Recently, kaftrio 

elexacaftor/tezacaftor/ivacaftor) was introduced as cystic fibrosis 

ransmembrane conductance regulator (CFTR) gene therapy for se- 

ected individuals with CF. Some studies reported that kaftrio treat- 

ent can reduce Mab infection because it either improves the 

athology (less mucus on the lung) or it restores the innate im- 

une function against the pathogen [ 15 , 16 ]. 

There is, therefore, a crucial need to develop new Mab -specific 

rugs with a novel mechanism of action that is effective against 

hese multi-drug-resistant strains. 

The anti- Mab drug pipeline is narrowly focused on repurpos- 

ng or reformulating approved antibiotics for other indications 

e.g. bedaquiline, rifabutin, etc. used in tuberculosis (TB) ther- 

py], reminiscent of the dry pipeline scenario in TB research 

wo decades ago [ 13 , 14 ]. However, a few repurposed drugs active

gainst Mab have been identified in the last few years, such as the 

ntimalarial OZ439 (targeting DosS-mediated hypoxic signalling), 

hird-generation tetracyclines, the new β-lactam T405, and an epe- 

raborole analogue inhibiting leucyl-tRNA synthetase [ 17–20 ]. Fur- 

hermore, some new antitubercular compounds have also been 

hown to be active against Mab [ 21 , 22 ]. Recently, activity against

ab was shown for the non-drug-like polycationic compound COE- 

NH2 [ 23 ]. 

Mab infections are often complicated by co-infections with 

ther pathogens, especially in individuals with CF. A drug in- 

ibiting novel bacterial targets embedded in conserved path- 

ays/functions could therefore be beneficial in such situations. 

In recent years, bacterial cell division (CD) has emerged as a 

ritical target in drug discovery [ 24 ]. Conserved proteins involved 

n CD, which often have no counterpart in eukaryotic cells (or low 

omology), are essential for bacterial survival and have been stud- 

ed extensively [ 24 , 25 ]. FtsZ is highly conserved due to its essential

ole in CD [ 26 ], and is considered an interesting cellular target for 

rugs with a broad spectrum of action. FtsZ protein is a structural 

omolog of the eukaryotic tubulin; both proteins are polymerized 

n a GTP-dependent manner to form cytoskeletal filaments for CD, 

ut they have different functions [ 26 , 27 ]. 

FtsZ has been investigated extensively as a potential target of 

ntimycobacterial compounds, and several molecules targeting the 

tb enzyme specifically have been reported to act through dif- 

erent mechanisms of action, such as by interference with poly- 

erization or assembly of FtsZ, or inhibiting GTPase activity [ 28 ]. 

oreover, some FtsZ inhibitors have been identified with anti- 

ab in-vitro activity [ 29 , 30 ], but have not been further character-

zed. Thus, despite the high ‘druggability’ of this enzyme, there 

re no FtsZ inhibitors in the Mab drug development pipeline at 

resent [ 13 ]. 

This study identified a new pyrithione-core molecule, named 

OMG, primarily active against Mab , but also active against other 
2

elevant pathogens including Mtb and Staphylococcus aureus ( Sau ). 

mploying a multi-disciplinary approach, this study showed that 

OMG displays potent in-vitro bactericidal activity against Mab 

n both planktonic and biofilm growth, and in an in-vivo mouse 

odel of Mab infection. Furthermore, using transcriptomic, bio- 

hemical and microbiological approaches, this study showed that 

OMG inhibits CD, particularly FtsZ activity. 

. Materials and methods 

.1. High-resolution confocal microscopy for single-cell analysis 

Mab ATCC 19977 cells were grown in Middlebrook 7H9 broth at 

7 °C under shaking conditions (150 rpm) to mid-log phase [optical 

ensity at 600 nm (OD600 ) 0.5–0.8] before snapshot single-cell as- 

ay. Fluorescence snapshot imaging was acquired using a 63x glyc- 

rol immersion objective installed on an inverted STELLARIS 8 con- 

ocal microscope equipped with a 410–850 tunable pulsed white 

aser. Samples for imaging were prepared bydispensing 0.5 μL of 

atch culture between two #1.5 coverslips. Exponential-phase Mab 

ells were either treated or not treated with 50 μg/mL of VOMG 

or 4 and 24 h. To monitor the bacterial changes induced by VOMG 

reatment accurately, two chemical dyes staining Mab chromosome 

Hoechst, Frankfurt, Germany) were used to observe possible DNA 

ondensation or the presence of multiple bacterial chromosomes 

ithin the same cells, and FM 1-43 (ThermoFisher, Waltham, MA, 

SA) was used to label mycobacterial membrane. At each men- 

ioned time point, 1 mL of culture was used to perform stain- 

ng of the bacterial chromosome using Hoescht (1:10 0 0) and the 

ycobacterial membrane using FM 1-43 (1:10 0 0) for 15 min at 

oom temperature. Next, the stained samples were washed once 

nd resuspended in 50 μL of phosphate buffered saline (PBS). ROI 

anager Macro of ImageJ2 (Fiji) 2.9.0/1.53t [ 31 ] was used to per- 

orm single-cell segmentation. The selection brush tool was used 

o cover the profile of individual cells, and extract bacterial length 

nd area. 

.2. Biochemical assays with FtsZ proteins 

For both Mab and Sau enzymes, GTPase activity was measured 

t 30 °C, with a spectrophotometric coupled assay using pyruvate 

inase and L-lactate dehydrogenase, as described previously [ 32 ]. 

or GTPase inhibition assays, enzymatic activity was determined in 

he presence of increasing concentrations of VOMG (0.5–100 μM), 

nd the IC50 was determined using Equation (1) and GraphPad 

rism 9 (GraphPad Software, San Diego, CA, USA): 

[ I] = A[ 0] ×
(

1 − [ I] 

[ I] + IC50 

)
(1) 

here A[I] is activity of the enzyme at inhibitor concentration [I]; 

nd A[0] is activity of the enzyme without inhibitor. 

The FtsZ inhibitor C109 [ 29 , 33 ] was used as a positive control

data not shown). 

The Sau FtsZ polymerization assay was performed by sedimen- 

ation assay, as described previously [ 33 ]. Briefly, the assay was 

one in 50 mM MES at pH 6.5, 5 mM Mg(CH3 COO)2 , 100 mM 

H3 CO2 K, 12 μM FtsZ, and 2 mM GTP or GDP. The reaction was in- 

ubated at 30 °C and 300 rpm for 10 min, and then samples were 

entrifuged (350,0 0 0 × g , 10 min, 25 °C). The supernatant was im- 

ediately separated from the pellet containing the protein poly- 

ers, and the samples were analysed by 12% SDS-PAGE with Blue 

oomassie staining. The Mab FtsZ sedimentation assay was per- 

ormed as above, but in 50 mM MES at pH 6.5, 5 mM MgCl2 and

0 mM KCl. In both cases, the polymerization assays were con- 

ucted in the presence of different concentrations (1–100 μM) of 

OMG. 
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The light scattering assay of FtsZ polymerization was performed 

s described previously, by measuring the 90 ° angle light scattering 

ith a Cary Eclipse fluorescence spectrophotometer (Varian, ON, 

anada), and using both excitation and emission wavelengths at 

00 nm [ 32 ]. Polymerization was measured at 30 °C in 150 μL of 50

M MES at pH 6.6, 10 mM Mg(CH3 COO)2 and 100 mM CH3 CO2 K, 

sing FtsZ at a final concentration of 12.5 μM after addition of 1 

M GTP. Data were collected every 5 s. 

.3. In-vivo efficacy studies of VOMG in mice 

Mice were housed (three to five mice per cage) in the biosafety 

evel 3 animal facility at IRCCS San Raffaele Scientific Institute, Mi- 

an, Italy. Lung infection was established to test the efficacy of 

OMG in vivo using an agar bead C57BL/6 mouse Mab infection 

odel [ 34–36 ]. Briefly, Mab colonies from 7H10 plates were grown 

or 2 days (to reach exponential phase) in 20 mL of Middlebrook 

H9 broth. For bead preparation, 50 mL of white heavy mineral oil 

nd 25 mL of trypticase soy agar were added to a bacterial suspen- 

ion, reaching an OD600 of 15, and mixed at medium speed with 

 magnet on a stirrer to generate agar beads, as described previ- 

usly [ 37 ]. Agar bead preparations were stored at 4 °C for no more

han 1 week; fresh preparations were performed every time. The 

ncorporation of Mab in agar beads and the intratracheal injection 

nabled the bacteria to be physically restrained in the bronchial 

irways, providing microanaerobic/anaerobic conditions which al- 

ow bacteria to grow in microcolonies [ 34–36 ]. For the infection, 

ice were anaesthetized, and the trachea was exposed and in- 

ubated. Next, the bead suspension [50 μL, 1 × 105 colony-forming 

nits (CFU)] was injected and the incision was closed with suture 

lips. Mice intratracheally infected with Mab ATCC19977 (1 x 105 

FU) were treated daily with vehicle (saline solution), amikacin 

intraperitoneal administration: 100 mg/kg mice, as positive con- 

rol group) and VOMG by intranasal administration for 7 consec- 

tive days, as described previously [ 36 ]. At the end of treatment 

8 days post challenge), the mice were euthanized, and their lungs 

ere excised aseptically and homogenized in 2 mL PBS using the 

omogenizer gentleMACSTM Octo Dissociator. Bacterial loads in lo- 

al (lung homogenates) and systemic (blood) compartments were 

etermined by plating the samples at 10-fold serial dilution in 

H10 agar medium (Difco; Becton Dickinson, Franklin Lakes, NJ, 

SA ). The experiment was repeated three times. 

.4. Statistical analysis 

For biofilm confocal analysis, images were processed with Im- 

ge J software. Statistical analysis was carried out with Prism 

 (GraphPad Software) using Mann–Whitney test. P -values < 0.05 

ere considered to indicate significance. 

For single-cell analysis, plots and statistical analysis were gener- 

ted using Prism 9.4 (GraphPad Software). Welch’s t -test was per- 

ormed to compare the variation of a single parameter over mul- 

iple groups. P -values < 0.05 were considered to indicate signifi- 

ance. 

Mann–Whitney tests were performed to compare the variation 

f a single parameter over multiple groups in in-vivo experiments. 

 -values < 0.05 were considered significant. 

. Results 

.1. Discovery of VOMG as a potent inhibitor of Mab growth 

Based on the idea that compounds active against Mab some- 

imes originate from antituberculosis drug discovery campaigns, 

 range of small-molecule derivatives from the class of pyridine 

-oxides, previously recognized for in-vitro activity against Mtb , 
3

ere synthesized [ 38 ] . All of these new derivatives were shown 

o exhibit moderate activity against Mab ATCC 19977 growth, 

ith minimal inhibitory concentrations (MICs) ranging from 1 to 

 μg/mL. Structurally, they shared two common structural fea- 

ures: electron-withdrawing groups at position 5 and a carbamimi- 

oylthio fragment (Table S1, see online supplementary material). 

t was hypothesized that these compounds may act as prodrugs 

hat can be transformed into the same active metabolite that 

s responsible for their in-vitro activity against Mab . To confirm 

his hypothesis, x-VOMG, which is one of the active derivatives, 

nd its two putative degradation products, VOMG and RCB19348, 

ere further studied (Table S1, see online supplementary material; 

ig. 1 A). 

Non-pathogenic Mycobacterium smegmatis cultures were incu- 

ated in the presence of x-VOMG (MIC = 2.5 μg/mL) and anal- 

sed by thin-layer chromatography; x-VOMG was almost com- 

letely degraded in the M. smegmatis cell extract, and a spot mi- 

rating as VOMG base occurred ( Fig. 1 B,C). Similar results were 

btained when both compounds were incubated in 7H9 medium 

lone, suggesting spontaneous hydrolysis of x-VOMG to VOMG 

ase in aqueous media, as confirmed by mass spectrometry analy- 

is ( Fig. 1 D–F). These data showed that x-VOMG, and probably all 

f the pyrithione-based derivatives, are prodrugs converted to the 

ame 5-(ethoxycarbonyl)-2-sulfidopyridine 1-oxide, named VOMG 

ase (the corresponding sodium salt was called VOMG). 

VOMG demonstrated higher activity against Mab (MIC = 0.125–

.250 μg/mL), whereas RCB19348 was inactive (Fig. 1A; Table S1, 

ee online supplementary material). Structure–activity relationship 

tudies of VOMG revealed that the sulphide substituent is prefer- 

ble for anti- Mab activity compared with the thiocyanate or sul- 

one substituents. RCB12083 and RCB13031 showed equipotent ac- 

ivity as VOMG, while RCB99063 and RCB12146 displayed dimin- 

shed activity, and RCB12155 was completely inactive (Table S1, see 

nline supplementary material). Consequently, VOMG was chosen 

or further studies due to its water-soluble properties, as described 

n the ‘Chemistry’ section of the online supplementary material. 

.2. VOMG has bactericidal and antibiofilm activity against Mab , and 

s suitable for drug combination therapy 

Time-kill assays (TKAs) using the reference Mab ATCC 19977 

train demonstrated rapid bactericidal activity of VOMG against 

ab planktonic cells with an early onset of activity (after 24 h) 

nd sterilizing capacity (no regrowth after 14 days of incubation), 

ith a clear concentration cut-off at 1 x MIC value (0.250 μg/mL) 

 Fig. 2 A). This represents an improvement compared with most 

rugs used in Mab therapy that are bacteriostatic [ 3 , 13 ]: amikacin,

igecycline, levofloxacin, imipenem, clofazimine and linezolid also 

howed a bactericidal effect at the highest concentrations (typi- 

ally 4 x MIC and 10 x MIC) but with slow onset of activity or

o sterilizing capacity (Fig. 2A; Fig. S1, see online supplementary 

aterial). 

The antibiofilm activity of VOMG was determined following 

reviously described protocols [ 39 ] using a high initial inoculum of 

08 cells/mL to facilitate biofilm formation. Biofilm studies showed 

 VOMG minimal bactericidal eradication concentration (MBEC) of 

28 μg/mL, similar to clarithromycin and amikacin used as posi- 

ive controls ( Fig. 2 B). Further studies by confocal laser scanning 

icroscopy showed that biofilm formation was significantly pre- 

ented by VOMG (8 μg/mL), similar to clarithromycin, measured as 

eduction in biofilm thickness and covered surface ( Fig. 2 C). When 

 mature biofilm was treated with VOMG (80 μg/mL), the thick- 

ess of the mature biofilm was reduced although the covered sur- 

ace remained constant. Clarithromycin decreased the covered sur- 

ace of the mature biofilm but had no effect on biofilm thickness, 

hile amikacin had no activity against Mab biofilms. The three 
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Fig. 1. Discovery of VOMG as the active metabolite of x-VOMG. (A) Transformation of x-VOMG into its metabolites, including VOMG. (B) Thin-layer chromatography (TLC) 

analysis of the extracts of Mycobacterium smegmatis cultures treated with: (1) x-VOMG; (2) VOMG; and (3) extract of culture treated with x-VOMG. (C) TLC analysis of the 

compounds after 24 h of incubation in 7H9 medium: (1) x-VOMG; (2) x-VOMG extracted after incubation in 7H9; (3) VOMG extracted after incubation in 7H9; and (4) 

VOMG. (D) Mass spectrometry analysis of x-VOMG. (E) Mass spectrometry analysis of VOMG. (F) Mass spectrometry analysis of x-VOMG extracted after incubation in 7H9 

medium. 
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ompounds had a reduced effect against the mature biofilm at a 

ower concentration (8 μg/mL) (Fig. S2, see online supplementary 

aterial). 

The potential inclusion of VOMG in combinational Mab ther- 

py was evaluated by combinatorial TKA assay with nine currently 

sed anti- Mab compounds. No antagonism was identified, indicat- 

ng the suitability of VOMG for combination therapy (Fig. S3, see 

nline supplementary material). 

.3. VOMG displays broad-spectrum antibacterial activity and is 

ctive against drug-resistant clinical isolates 

The water-soluble VOMG molecule (Table S1, see online sup- 

lementary material) showed greater activity than its prodrug 

-VOMG against all the mycobacterial species tested, including 

ab, Mycobacterium avium and Mtb drug-resistant isolates (Table 
4

2, see online supplementary material). VOMG was also active 

gainst Escherichia coli, Acinetobacter baumannii and Sau, including 

ethicillin-resistant clinical isolates (Table S3, see online supple- 

entary material), while it was inactive against Klebsiella pneumo- 

iae and Pseudomonas aeruginosa (MIC > 128 μg/mL). However, ac- 

ivity against P. aeruginosa could be restored in the presence of the 

fflux pump inhibitor PaßN (MIC = 1 μg/mL). VOMG was also ac- 

ive against some fungal species (Table S4, see online supplemen- 

ary material). 

.4. VOMG has favourable ADME-Tox profile and shows efficacy in a 

ouse model of Mab infection 

VOMG revealed good metabolic stability in mouse and human 

iver microsomes, low levels of CYP inhibition, no mutagenicity 
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Fig. 2. VOMG has bactericidal and antibiofilm activity against Mycobacterium abscessus ( Mab ) . (A) Time-kill assay of VOMG in Mab. The graph is representative of three 

different experiments (each experiment includes two technical replicates). (B) Minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration 

(MBEC) of VOMG and x-VOMG against Mab. (C) Prevention of biofilm formation with VOMG, clarithromycin and amikacin at 8 μg/mL. 
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Ames fluctuation test) and no cardiotoxicity (hERG assay) signals 

Table S5, see online supplementary material). 

A chronic toxicity study in healthy C57BL/6 male mice following 

 single oral administration of VOMG (50 mg/kg) showed no ad- 

erse effects during the 2-week observation period (Table S6, see 

nline supplementary material). The acute toxicity study in mice 

howed a LD50 of 455.78 ± 21.79 mg/kg. 

Pharmacokinetics studies in mice revealed good bioavailability 

f VOMG. Peak plasma concentrations were achieved after 4 h fol- 

owing a single oral administration. VOMG was eliminated gradu- 

lly, with a mean retention time of 18.3 h and a half-life of 12.3 h.

he apparent volume of distribution was established as 273.6 mL/g, 

nd apparent total body clearance was 15.38 mL/h/g (Fig. 3A; Table 

7, see online supplementary material). 

The in-vivo efficacy of VOMG was tested using different doses 

50, 100 and 500 mg/kg bw) in C57BL/6NCrl mice infected with 

gar-embedded Mab cells. Intranasal administration of VOMG at 

he lowest dose tested (50 mg/kg body weight) significantly re- 

uced the bacterial load in the lungs and at systemic levels in 

lood samples in comparison with the control untreated infected 

roups. The results were comparable to those observed in the pos- 

tive control group treated with amikacin ( Fig. 3 B–D). 
5

.5. VOMG and its prodrug inhibit CD 

To study the mechanism of action of VOMG, first the authors 

ried to generate in-vitro VOMG-resistant mutants in Mab, Mtb 

nd M. smegmatis using a strain lacking NucS/EndoMS [ 40 ]. All 

ttempts were unsuccessful, suggesting a cellular target essential 

or mycobacterial cell growth. Next, the authors screened a panel 

f Mtb mutants resistant to known drugs, which harbour identi- 

ed mutations in genes encoding targets [ 41–44 ], activators [ 43 , 45 ]

nd associated mechanisms of drug resistance [ 43 , 46 , 47 ]; these

trains were all sensitive to VOMG (Table S8, see online supple- 

entary material), suggesting a different mechanism of resistance 

rom those represented in the panel. 

Finally, Mab cultures treated with x-VOMG (10- and 20-fold 

IC, plus untreated controls) were subjected to transcriptomics to 

dentify differentially expressed genes (DGEs). In total, 493 genes 

ere found to be differentially expressed in both treatments com- 

ared with controls: 363 upregulated and 130 downregulated (Ta- 

le S9, see online supplementary material) ( Fig. 4 A–C). The level 

f expression of three DGEs (two induced and one repressed) was 

lso confirmed by quantitative real-time polymerase chain reaction 

Table S10, see online supplementary material). Assignment of Mab 



G. Degiacomi, L.R. Chiarelli, O. Riabova et al. International Journal of Antimicrobial Agents 64 (2024) 107278

Fig. 3. VOMG has good bioavailability and is effective in vivo . (A) Pharmacokinetics of VOMG after 100 mg/kg per os administration in mice. (B) Evaluation of the efficacy of 

VOMG (50, 100 and 500 mg/kg) in immunocompetent C57BL/6NCrl mice infected with agar-embedded Mycobacterium abscessus cells by intranasal administration. Amikacin 

(100 mg/kg, IP) was used as internal control. Timeline of the experiment. (C) VOMG at 50, 100 and 500 mg/kg reduced the bacterial burden in the lungs significantly 

compared with infected groups. (D) A similar trend in bacterial burden reduction after VOMG treatment was observed in blood samples. CFU, colony-forming unit. 
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TCC 19977 genes to functional categories revealed that most DGEs 

all within seven functional categories [ 48 ]. The most represented 

roups were ‘conserved hypothetical proteins’ and ‘intermediary 

etabolism and respiration’ ( Fig. 4 C). 

The most overexpressed genes were associated with compound- 

nduced stress, such as genes encoding catalase, carbonic anhy- 

rase ( MAB_3211c ), kinase, and alternative sigma factors [ 49 ]. In- 

erestingly, overexpression of several genes encoding proteins in- 

olved in metal metabolism (e.g. ArsR, ArsC, etc.), nitrogen and sul- 

hur metabolism, and membrane proteins (e.g. efflux pumps, chap- 

ronines and heat shock proteins) was observed ( Fig. 4 C). These 

ata suggested that x-VOMG treatment could cause cellular stress, 

ffecting cell permeability and disrupting metal homeostasis. 

Genes involved in transcription, protein and ATP synthesis pro- 

esses were shut-down by x-VOMG treatment (genes encoding 

NA polymerase subunits such as rpoB ; RHO factor and NusG fac- 

or; ribosomal proteins such as rpmI, rpmT, rpmD ; translation ini- 

iation factors; operon coding for ATP synthase) [ 50 , 51 ]. Cellular 

espiration was also inhibited (e.g. genes encoding quinones and 

ytochromes), as well as genes encoding MCE proteins, promoting 

acrophage invasion [ 52 ]. Interestingly, the most downregulated 

peron was the highly conserved division cell wall ( dcw ) operon 

ssential for Mab growth. Genes coding for FtsZ, FtsQ, SepF (pos- 

tive CD regulator), SteA and SteB (involved in the last CD steps), 

nd MurC and MurG (involved in peptidoglycan biosynthesis) were 

ownregulated (Table S11, see online supplementary material). 

These findings suggest that x-VOMG, and consequently its ac- 

ive metabolite VOMG, could inhibit CD, particularly FtsZ. 

The morphological Mab single-cell changes (i.e. area and length) 

nduced by VOMG (50 μg/mL, 200 x MIC) after 4 and 24 h of 

reatment were monitored ( Fig. 4 D,E). Single-cell analysis revealed 

hat, particularly after 24 h of VOMG treatment, Mab cells exhib- 
s

6

ted a significant increase in both bacterial area and length com- 

ared with the untreated control ( Fig. 4 D,E). In addition, the bacte- 

ial septum (white arrow in Fig. 4 D) could be observed in the cells 

reated with VOMG for 4 h, together with multiple condensation 

oci, conformation putatively compatible with the presence of mul- 

iple copies of the chromosome [ 53 ], suggesting an interruption in 

ycobacterial replication ( Fig. 4 D). Similarly, aberrant elongation, 

ncreased area and multiple chromosome foci within the same cell 

ere observed in the 24-h-treated cells ( Fig. 4 E). These results con- 

rm the RNA-seq findings indicating that VOMG dysregulates Mab 

D. 

.6. VOMG inhibits FtsZ activity not only in Mab but also in Sau 

hrough different mechanisms 

Mab and Sau [ 33 ] FtsZ proteins were produced recombinantly 

Fig. S4, see online supplementary material), and the ability of 

OMG to directly inhibit FtsZ GTPase activity and its ability to 

orm polymers was evaluated. VOMG was able to block FtsZ GT- 

ase activity, but displayed only weak effects (IC50 values of 54.0 

3.6 μM and 18.5 ± 1.8 μM for Mab and Sau FtsZ, respectively) 

 Fig. 5 A,B). Thus, it was tested whether VOMG could interfere 

irectly with FtsZ polymerization. An in-vitro sedimentation as- 

ay demonstrated that VOMG inhibited the formation of Mab 

tsZ polymers in a concentration-dependent manner ( Fig. 5 C). 

his was in contrast to the effect observed against Sau FtsZ, 

here the quantity of the polymerized protein increased ( Fig. 5 D), 

uggesting that the effect of VOMG on FtsZ polymerization dif- 

ers in the two pathogens. So, while VOMG inhibited polymer 

ormation in Mab , it modified polymerization kinetics in Sau , 

ncreasing the quantity of polymers formed or affecting their 

tability. 
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Fig. 4. x-VOMG inhibits several key metabolic pathways, in particular cell division. (A) Volcano plot showing Mycobacterium abscessus ( Mab ) genes up- (blue) and down- 

regulated (red) in response to x-VOMG treatment (10 μg/mL). (B) Volcano plot showing Mab genes up- (blue) and downregulated (red) in response to x-VOMG treatment 

(20 μg/mL). (C) COG enrichment plot showing shared categories significantly down- (red) and upregulated (blue) in response to x-VOMG treatment. (D) Single-cell area and 

length of Mab wild-type strain treated with 50 μg/mL of VOMG or not for 4 h. On the right, representative snapshot images of Mab wild-type strain treated with 50 μg/mL 

of VOMG or not (control) for 4 h and stained with Hoechst and FM 1-43. (E) Single-cell area and length of Mab wild-type strain treated with 50 μg/mL of VOMG or not for 

24 h. Black lines indicate mean ± SD (83 > n < 103). On the right, representative snapshot images of Mab wild-type strain treated with 50 μg/mL of VOMG or not (control) 

for 24 h and stained with Hoechst and FM 1-43. Asterisks denote significant difference by Welch’s t -test: ∗∗P = 0.0021; ∗∗∗P = 0.0 0 04; ∗∗∗∗P < 0.0 0 01. Hoechst (blue) and 

FM 1-43 (yellow) are shown separately and merged, as indicated in the snapshots. Scale bar 2 μm. 
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This evidence was confirmed by FtsZ polymerization kinetic 

tudies through 90 ° light scattering assays. In Mab , VOMG initially 

nduced very rapid FtsZ polymerization, probably leading to un- 

table polymers that collapsed rapidly. The protein was no longer 

ble to form polymers at the highest concentrations ( Fig. 5 E). In 

ontrast, in Sau, FtsZ polymerized faster, but the depolymeriza- 

ion rate decreased; consequently, polymer disassembly was longer 

han in the untreated control ( Fig. 5 F). These data confirmed that 
7

tsZ polymer assembly and, consequently, bacterial CD were dra- 

atically impacted by VOMG in both species. 

. Discussion 

Over the last 15 years, Mab has emerged as a worrying 

athogen causing several clinical manifestations, particularly lung 

nfections in individuals suffering from CF and COPD. In these pop- 
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Fig. 5. VOMG inhibits FtsZ activity in both Mycobacterium abscessus ( Mab ) and Staphylococcus aureus ( Sau ). (A) IC50 determination of VOMG against Mab FtsZ GTPase activity. 

Data are mean ± SD from three different replicates. (B) IC50 determination of VOMG against Sau FtsZ GTPase activity. Data are mean ± SD from three different replicates. 

(C) SDS-PAGE of sedimentation assay of Mab FtsZ in the presence/absence of VOMG. (D) SDS-PAGE of sedimentation assay of Sau FtsZ in the presence/absence of VOMG. 

P, insoluble fraction (pellet); S, soluble fraction (supernatant). Images are representative of at least three different experiments. On the right, the densitometric analysis of 

the gels is reported; the density of the protein band in the pellet of the reactions performed with GTP in the absence of VOMG was used as reference and considered as 

100% (∗∗P < 0.01, ∗∗∗∗P < 0.0 0 01 one-way analysis of variance). (E) Light scattering polymerization assay of Mab FtsZ in the absence (black line) or presence of increasing 

concentration of VOMG (400 μM, red line; 200 μM, blue line; 100 μM green line; 50 μM, purple line, 25 μM, yellow line). (F) Light scattering polymerization assay of Sau 

FtsZ in the absence (black line) or presence of increasing concentration of VOMG (as in E). 
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lations, Mab infection treatment outcomes are usually poor [ 3–5 ]. 

nfortunately, the elevated rates of attrition in the drug develop- 

ent process are linked directly to the limited options available 

n the anti- Mab drug pipeline. In fact, currently recommended and 

vailable therapeutic strategies are mainly based on repositioning 

ntibiotics used for other indications, such as TB, and there are no 

pecific new drugs on the horizon that can prevent Mab from be- 

oming the next superbug [ 13 , 14 ]. Innovative approaches such as 

hage therapy can represent alternative therapies, although their 

ide clinical implementation remains a challenge, leaving options 

or personalized medicine [ 54 ]. 

VOMG was discovered in a focused screening to identify novel 

ompounds active against Mab (one compound active against Mab 

rowth out of more than 700 tested; M.R. Pasca, V. Makarov, 

ersonal communication). VOMG is a highly polar molecule that 

as positive and negative centres, as well as hydrophilic and 

ipophilic moieties in its structure. For these reasons, it can eas- 

ly cross mycobacterial cell walls, like isoniazid. Furthermore, like 
8

rugs targeting enzymes located inside the cell, VOMG has hy- 

rophilic moieties. Lipophilicity may be a key factor for antituber- 

ular agents that target enzymes in the cell membrane [ 55 , 56 ].

OMG fully complies with Lipinski’s rules (less than five donor 

ydrogen bonds; < 10 acceptor hydrogen bonds; molecular weight 

 500; о ctanol–water distribution coefficient < 5). 

VOMG is a pyrithione-core small molecule (x-VOMG is its pro- 

rug) with a strong substituent at position 5 of the ring that with- 

raws electrons from sulphur and makes any chelation of metals 

ther than copper unattainable (according to the Irving–Williams 

eries of metal complex stability). Many drugs in the market can 

helate copper and, very often, it corresponds to their toxicity- 

elated mechanism of action towards bacterial cells [ 57 , 58 ]. In the

ase of VOMG, its preliminary safety profile was demonstrated 

hrough various assays, including in-vitro and in-vivo studies such 

s ADME-Tox assays, and acute and subchronic toxicity studies in 

ice. In fact, pharmacokinetic and toxicity studies using an oral 

ose of 100 mg/kg body weight showed no toxicity and high safety 
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mean Cmax value 400 ng/mL, which is above the MIC value of 250 

g/mL). ADME studies confirm the lack of toxicity signals in VOMG. 

n the in-vivo studies, intranasal delivery directly into the lungs 

ay have further increased concentration values directly at the 

ite of infection, reducing systemic toxicity. Finally, VOMG could be 

uitable for novel drug delivery formulations, including aerosol in- 

alation [ 59 ], owing to its favourable physicochemical properties, 

uch as water solubility, good oral bioavailability, and absence of 

oxicity [ 60 ]. 

The average success rate of Mab drug therapy is approximately 

5% [ 61 ], as most drugs used as anti- Mab therapeutics are bacte- 

iostatic [ 3 , 62 ], they have no antibiofilm activity, and they are inef-

ective against drug-resistant isolates of this pathogen. In contrast, 

OMG exhibits high bactericidal activity in vitro , eradicating Mab 

n planktonic culture, and antibiofilm properties. It is also active 

gainst drug-resistant Mab clinical isolates, including multi-drug- 

esistant strains. TKAs showed a clear concentration cut-off with 

ack of dose range correlation with activity. At a concentration of 

ust 1 x MIC (0.25 μg/mL), VOMG reduced the bacterial load rapidly 

nd cleared the culture. This activity was more potent than that 

f the currently recommended clarithromycin and amikacin, or of 

ther drugs under development [ 63 ]. VOMG was also equally or 

ore active than the standard of care drugs against Mab biofilm. 

ndeed, only a few compounds are active against Mab biofilm, such 

s clarithromycin, which was used in this study as the control 

 64 ]. The antibiofilm activity was observed using two complemen- 

ary approaches: prevention of biofilm formation and treatment 

f a mature biofilm. VOMG is also active against drug-resistant 

ab clinical isolates, including multi-drug-resistant strains. Fur- 

hermore, the authors were unable to isolate mutants resistant to 

OMG in vitro , which is a key aspect for infectious drug develop- 

ent, and is one of the most advantageous features of VOMG. 

The bactericidal and eradicating properties of VOMG, together 

ith its broad-spectrum antimicrobial activity and antibiofilm 

roperties, strongly reinforce the potential of VOMG for the treat- 

ent of pulmonary infections, especially in individuals with CF, 

ven when the standard of care treatment is not effective. 

A significant roadblock in the development of novel drugs 

gainst Mab is the absence of a validated mouse model of chronic 

ab pulmonary disease suitable for evaluating the in-vivo effi- 

acy of novel therapeutics. BALB/c mice infected intranasally with 

 high dose produced an infection that progressed to approxi- 

ately 107 CFU/mL in the lungs after14 days post infection [ 63 ]. 

3HeB/FeJ mice aerosol-infected and treated with corticosteroids 

howed progression of the infection, reaching moderate bacterial 

urdens (approximately 4–5 log10 CFU/mL in the lungs), but allow- 

ng for extended 4-week treatment schedules [ 65 , 20 ]. The present 

tudy used an alternative C57BL/6 model of Mab infection em- 

edded within agar beads and delivered directly to the bronchial 

irways providing microanaerobic/anaerobic conditions that allow 

acteria to grow in microcolonies [ 34–36 ], more accurately resem- 

ling the natural lung environment in CF individuals. In this model, 

 7-day intranasal treatment of VOMG was able to contain the bac- 

erial burden in the lungs and blood similar to the effect achieved 

ith amikacin (used as control), which was administered intraperi- 

oneally. VOMG water solubility, coupled with the in-vivo findings 

y intranasal administration, could allow speculation on the pos- 

ibility for nebulization delivery. Similar to what was observed in 

he TKA studies, there was no dose proportionality in the effect 

f the treatment; i.e. no significant differences were observed be- 

ween the lowest dose (50 mg/kg body weight) and the highest 

ose (500 mg/kg body weight), suggesting that the lowest effica- 

ious dose has not yet been defined, and that once an effective 

ose has been reached, further increase may not be needed. 

The mode of action of VOMG is novel; transcriptional analysis 

evealed inhibition of key metabolic pathways, such as CD, protein 
9

ynthesis, ATP production and gene transcription. Genes encoding 

tsZ and other CD proteins are the most downregulated in the 

resence of VOMG, pointing out possible inhibition of FtsZ. Single- 

ell analysis and biochemical assays confirmed that VOMG affects 

he organization of FtsZ polymers and, consequently, CD. 

FtsZ is highly conserved among micro-organisms [ 26 ], which is 

onsistent with the broad-spectrum activity observed for VOMG. 

he mechanism of action of VOMG seems to be very peculiar as it 

s not only able to block FtsZ GTPase activity, but also to modify 

he polymerization kinetics of the protein which, overall, reflect an 

lteration of in-vivo CD organization and assembly rate. 

VOMG has a distinct impact on the polymerization of Mab and 

au FtsZ proteins. This could be due to the low identity percentage 

f the C-terminal region of the two proteins implicated in protofil- 

ment formation and in lateral interactions of polymers [ 66 ]. In- 

erestingly, the FtsZ inhibitor PC190723, which is active against Sau 

nd Bacillus subtilis , has been reported to induce polymer stabiliza- 

ion and suppress in-vivo FtsZ polymer dynamics [ 67 ], similar to 

he effect of VOMG on Sau FtsZ. 

VOMG also increases the rate at which Mab FtsZ polymerizes 

or a short time and then decreases it. This feature could be bene- 

cial in a multi-drug regimen. VOMG could increase the polymer- 

zation rate, leading to an increased extracellular growth rate, be- 

oming more sensitive to VOMG and other co-administered drugs 

argeting actively growing bacteria. 

Although several FtsZ inhibitors have been identified in recent 

ears [ 29 , 30 ], none of them are currently under development as 

nti- Mab compounds at any stage of the process. 

In conclusion, VOMG is a new water-soluble compound tar- 

eting Mab specifically with good in-vitro , in-vivo and ADME/Tox 

roperties, and a novel mode of action specific for bacteria, in- 

ibiting CD. These features bring promise for a new drug candi- 

ate with the possibility to use different formulations in the much 

eeded and narrow Mab drug development pipeline. Potential pro- 

ression of VOMG into the clinic might bring new therapeutic op- 

ions to treat lung disease caused by this pathogen and other sus- 

eptible microorganisms. 
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